Prayoga, Prayoga (2024) Implementasi Algoritma Naive Bayes untuk Klasifikasi Pola Cuaca Berdasarkan Dataset di Stasiun Soekarno Hatta. Other thesis, Universitas Darul Ulum.
![[thumbnail of Abstrac]](http://repository.undar.ac.id/style/images/fileicons/text.png)
S1-2024-202355201013-Abstrac.pdf - Submitted Version
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (193kB)
![[thumbnail of Bab I Introduction]](http://repository.undar.ac.id/style/images/fileicons/text.png)
S1-2024-202355201013-Bab I Introduction.pdf - Submitted Version
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (160kB)
![[thumbnail of Bibliography]](http://repository.undar.ac.id/style/images/fileicons/text.png)
S1-2024-202355201013-Reference.pdf - Submitted Version
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (185kB)
![[thumbnail of Full Skripsi]](http://repository.undar.ac.id/style/images/fileicons/text.png)
S1-2024-202355201013-Full Report.pdf - Submitted Version
Restricted to Repository staff only
Available under License Creative Commons Attribution Non-commercial Share Alike.
Download (4MB) | Request a copy
Abstract
This research explains how to use datasets from the Soekarno Hatta meteorological station to classify weather patterns using the Naive Bayes algorithm. The probability-based Naive Bayes algorithm was chosen for its ease of use and effectiveness in handling large and complex data sets. The dataset used in this research contains various meteorological factors collected over a certain period of time, including temperature, humidity, air pressure and wind speed. The research procedure requires pre-processing the data, separating it into training and test sets, and using the Naive Bayes algorithm to forecast the weather. The findings of this research show that the Naive Bayes algorithm can categorize weather patterns accurately to a sufficient level.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Naive Bayes, klasifikasi, pola cuaca, dataset, stasiun meteorologi Soekarno Hatta, prediksi cuaca, pre-processing data, akurasi, meteorologi. |
Subjects: | Universitas Darul Ulum > Fakultas Teknik > Teknik Informatika Universitas Darul Ulum > Fakultas Teknik > Teknik Informatika T Technology > TE Highway engineering. Roads and pavements T Technology > TF Railroad engineering and operation |
Divisions: | Faculty of Engineering, Science and Mathematics > School of Electronics and Computer Science |
Depositing User: | prayoga prayoga |
Date Deposited: | 15 Mar 2025 06:44 |
Last Modified: | 15 Mar 2025 06:44 |
URI: | http://repository.undar.ac.id/id/eprint/1184 |