

JURNAL REKAYASA SIPIL DAN LINGKUNGAN

Jurnal Teoritis dan Terapan Bidang Rekayasa Ketekniksipilan dan Lingkungan

eISSN 2545-9518 Homepage: https://jurnal.unej.ac.id/index.php/JRSL/index

Terakredidasi Peringkat 4 (Keputusan Dirjen Dikti, Riset & Teknologi No. 230/E/KPT/2022 tanggal 30 Des. 2022)

Analisa Kapasitas Saluran Pembuang Beweh Kabupaten Jombang untuk Penanggulangan Banjir Area Persawahan

Analysis of the Capacity of Exhaust Duct in Jombang Regency for Overcoming Floods in Paddy Field Areas

Saiful Arfaah a, M. Hasib Al-Isbilly a, Machrus Ali b,2

- ^a Teknik Sipil, Universitas Darul Ulum, Jl. Gus Dur 29A Jombang.
- ^b Teknik Elektro, Universitas Darul Ulum, Jl. Gus Dur 29A Jombang

ABSTRAK

Diantara penyebab banjir di area persawahan adalah menurunnya kapasitas penampang saluran pembuang yang disebabkan oleh mengecilnya penampang saluran akibat sedimentasi. Saluran pembuang Beweh di Kabupaten Jombang merupakan saluran alam yang difungsikan untuk mengalirkan kelebihan air dari persawahan. Dikarenakan berupa saluran alam, maka Daerah Aliran Sungai (DAS) mempunyai kontribusi yang cukup besar sebagai penyumbang debit air selain kelebihan air dari proses pertanian. Selama ini Saluran Pembuang Beweh mengalami kelebihan debit air yang menyebabkan banjir di area persawahan dan berakibat menurunnya produksi pertanian. Oleh karena itu diperlukan kajian untuk mengetahui kapasitas saluran dengan mempertimbangkan intensitas curah hujan dari DAS. Hasil dari kajian ini diharapkan menjadi dasar untuk mengambil langkah penanggulangan banjir yang terjadi di area persawahan dan memberikan pemahaman baru terkait kontribusi DAS dalam perencanaan dimensi saluran pembuang. Metode yang dilakukan dalam kajian ini meliputi analisa hidrologi untuk menentukan besar intensitas hujan dan besar debit rencana. Pengukuran profil melintang saluran digunakan untuk mengetahui kapasitas eksisting saluran. Dari hasil analisa terhadap data curah hujan selama 10 tahun diperoleh intensitas hujan (I) 15,235 mm/jam dan debit rencana (Or) 80,524 m3/dt. Hasil analisa kapasitas eksisting Saluran Pembuang Beweh bervariasi antara 10.97 m3/dt (minimum) dan 70.75 m3/dt (maksimum) sedangkan debit banjir rencana sebesar 80.524 m3/dt. Dari hasil tersebut dapat diketahui bahwasanya terjadi luapan di sepanjang Saluran Pembuang Beweh. Untuk menanggulangi banjir yang terjadi akibat luapan dilakukan perencanaan ulang (normalisasi) saluran berbentuk trapesium dengan kemiringan talud 1:1, lebar dasar saluran 12 m dan tinggi saluran 3 m. Saluran pembuang hasil normalisasi dapat mengalirkan debit sebesar 81,708 m3/dt.

Kata kunci: Banjir, Debit Rencana, Saluran Pembuang, Profil Melintang

ABSTRACT

One of the causes of flooding in rice fields is a decrease in the cross-sectional capacity of drainage channels caused by a reduction in the channel cross-section due to sedimentation. The Beweh drain channel in Jombang Regency is a natural channel that functions to drain excess water from rice fields. Because it is a natural channel, the River Basin (DAS) has a significant contribution as a contributor to water discharge in addition to excess water from agricultural processes. So far, the Beweh Drain Channel has experienced excess water discharge which has caused flooding in rice fields and resulted in a decline in agricultural production. Therefore, a study is needed to determine the channel capacity by considering the rainfall intensity of the watershed. It is hoped that the results of this study will be the basis for taking steps to overcome flooding that occurs in rice fields and provide a new understanding regarding the contribution of watersheds in planning the

¹ Info Artikel: Received: 28 November 2023, Accepted: 27 Desember 2023

² Corresponding Author: Machrus Ali, Email machrus 7@gmail.com

Jurnal Rekayasa Sipil dan Lingkungan, eISSN 2548-9518 Vol. 7, No. 2, Tahun 2023, p.161-172

dimensions of drainage channels. The method used in this study includes hydrological analysis to determine the intensity of rain and the amount of planned discharge. Channel transverse profile measurements are used to determine the existing capacity of the channel. From the results of the analysis of rainfall data for 10 years, the rainfall intensity (I) was 15,235 mm/hour and the planned discharge (Qr) was 80,524 m3/sec. The results of the analysis of the existing capacity of the Beweh Drain Channel vary between 10.97 m3/s (minimum) and 70.75 m3/s (maximum) while the planned flood discharge is 80,524 m3/s. From these results, it can be seen that overflow occurred along the Beweh Drain Channel. To overcome flooding that occurs due to overflows, a trapezoid-shaped channel is re-planned (normalized) with a slope of 1:1 embankment, a channel base width of 12 m, and a channel height of 3 m. The discharge channel resulting from normalization can flow a discharge of 81,708 m3/sec.

Keywords: Flood, Drain, Design Discharg, Cross-profile.

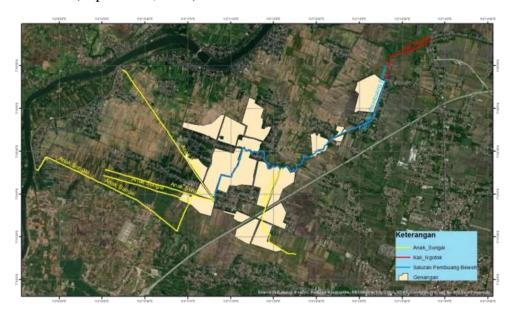
PENDAHULUAN

Banjir adalah suatu bencana yang mengganggu kehidupan manusia berupa genangan air dari yang terkecil sampai terbesar yang disebabkan faktor-faktor baik manusia maupun alam atau aliran air yang tinggi, dan tidak tertampung oleh aliran sungai sehingga air itu meluap ke daratan yang lebih rendah (Sulaiman et al., 2020).

Banjir bisa saja terjadi di daerah pemukiman penduduk maupun di area persawahan. Seperti pada umumnya, area persawahan sebagai tempat untuk bercocok tanam (pertanian) sangat tergantung kepada musim (musim hujan dan kemarau). Ketidakseimbangan waktu antara dua musim ini bisa menyebabkan bencana banjir dan sebaliknya bencana kekeringan (Soewandita, 2019). Air yang berlebihan di suatu tempat akibat hujan yang besar dan genangan menimbulkan kerugian yang sangat besar bagi para petani. Hal ini bisa terjadi karena diakibatkan oleh prilaku manusia itu sendiri diantaranya adalah tidak terjaganya prasarana pengendali banjir seperti inlet kanal banjir (Sundoro, G. H., Bisri, M., & Sisinggih, 2017) yang sudah disiapkan baik dari pemerintah mauapun masyarakat(Anam, S., Dermawan, V., & Sisingih, 2016). Selain banjir juga disebabkan tingginya curah hujan uang turun pada daerah tersebut (Sari, 2018).

Dalam upaya pengendalian banjir tentunya harus mempertimbangkan dua aspek yaitu aspek teknik dan aspek ekonomis(Tendean, F., Suhardjono, S., & Yuliani, 2016). Berbagai kegiatan pengendalian banjir telah dilakukan pemerintah dalam mengatasi banjir namun sifatnya hanya mengurangi dan belum dapat menyelesaikan banjir secara total dan beberapa kegiatan besar seperti rencana pembuatan bendungan dan floodway (sodetan) tidak dapat dilaksanakan karena terkendala dengan pembebasan tanah dan hanya menjadi program perencanaan dan studi jangka menengah yang tidak dapat terealisasi dengan baik (Mugaddas, Kusuma, Asmaranto, & Yanuwiadi, 2021).

Pada area persawahan di sebagian Kecamatan Megaluh Kabupaten Jombang, banjir merupakan masalah yang seringkali terjadi. Hal ini terjadi dikarenakan curah hujan yang tinggi sehingga kelebihan air di area persawahan tidak mampu dialirkan oleh saluran pembuang Beweh. Saluran Pembuang Beweh sendiri termasuk di dalam wilayah sub DAS Kali Ngotok Ringkanal. Dari data dinas PUPR Kabupaten Jombang rata-rata tinggi genangan ± 1 meter dengan durasi paling lama 7 hari dengan luas genangan 323,83 Ha. Dampak dari genangan tersebut produksi pertanian mengalami kerugian dengan tafsiran kerugian sebesar ± Rp. 1.748.682.000,-. Mengingat area persawahan yang terkena dampak banjir cukup luas, maka perlu segera dilakukan langkah penanggulangan.

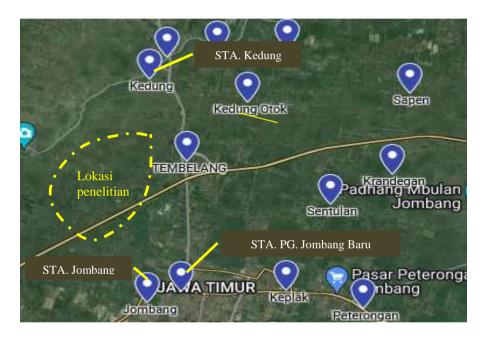

Penilaian para ahli tentang alternatif pengurangan risiko bencana banjir yang tepat adalah peningkatan efektivitas pencegahan dan mitigasi bencana dengan kegiatan perlindungan

daerah tangkapan air, restorasi sungai, revitalisasi waduk dan tanggul, pemantauan berkala hulu sungai, dan penerapan resapan air (Priyanka Prajna Paramitha, Rudy P. Tambunan, & Tito Latif Indra, 2020) Parameter pertama dalam perencanaan pengendalian banjir dapat dilakukan dengan baik apabila debit banjir rencana diketahui (Kasim, 2020). Parameter kedua yang harus diketahui adalah profil muka air dan kapasitas eksisting saluran sebagai penghantar debit rencana(Parulian, R., Bisri, M., & Solichin, 2016). Dengan mengetahui kedua parameter tersebut maka alternatif penanggulangan banjir dapat ditentukan.

Dari uraian di atas, penelitian ini betujuan untuk mengetahui kondisi eksisting aliran pada Saluran Pembuang Beweh dan menentukan alternatif langkah penanggulangan banjir yang terjadi. Langkah penanggulangan diharapkan dapat mengurangi dampak resiko bencana banjir di daerah yang terkena luapan Saluran Pembuang Beweh.

METODOLOGI

Kajian ini adalah jenis penelitian lapangan (field research) yaitu suatu penelitian yang dilakukan secara sistematis dengan mengangkat data yang ada di lapangan (Abdussamad, 2021). Penelitian dilakukan di wilayah sub DAS Kali Ngotok Ringkanal di Kecamatan Megaluh Kabupaten Jombang. Data penelitian meliputi data primer yang merupakan hasil survey yang meliputi data pengukuran profil memanjang saluran sepanjnag 1100 m dan data pengukuran profil melintang sungai dengan jarak 50 m sebanyak 12 titik. Data sekunder yang diperoleh dari dinas terkait di Kabupaten Jombang. Data sekunder meliputi curah hujan selama 10 tahun (tahun 2013 s/d tahun 2022) dan data profil DAS Kali Ngotok Ringkanal. Dari data yang diperoleh, dilakukan analisa hidrologi dan analisa hidrolika yang meliputi analisa intensitas hujan, debit rencana, penampang eksisting saluran dan volume sedimen. Hasil analisa akan diperoleh kemampuan pengaliran Saluran Pembuang Beweh dan volume sedimen yang harus diangkat dari saluran (normalisasi). Curah hujan rerata daerah dihitung dengan cara aritmatik (Anggraheni et al., 2022). Curah hujan rancangan dihitung dengan menggunakan metode Log Pearson Tipe III, karena merupakan distribusi yang fleksibel untuk analisa frekwensi atas data hidrologi (Paresa, Pamuttu, & Kartini, 2021). Perhitungan intensitas hujan dengan persamaan dari Mononobe. Debit rencana dihitung menggunakan Metode Rasional (Saparuddin, 2022).


Gambar 1 Lokasi banjir di wilayah Saluran Pembuang Beweh

Gambar 1 menunjukkan bahwa Saluran Pembuang Beweh merupakan saluran alam yang terhubung dengan beberapa anak sungai di hulu dan Kali Ngotok di hilir.

HASIL

Curah Hujan Harian Maksimum

Sebagai dasar dalam analisa hidrologi digunakan data hujan maksimal harian dari tiga stasiun hujan yaitu Stasiun Hujan Jombang, Stasiun Hujan PG. Jombang Baru, dan Stasiun Hujan Kedung.

Gambar 2 Lokasi Stasiun Penakar Hujan

Gambar 2 menunjukkan lokasi 3 stasiun penakar hujan yang (BMKG, n.d.)

Tahun STH. Jombang STH. PG Jombang Baru STH. Kedung No.

Tabel 1. Curah Hujan Harian

Perhitungan Curah Hujan Rerata Daerah

Hujan daerah adalah curah hujan rata-rata di seluruh daerah yang ditinjau, bukan curah hujan pada suatu titik terentu yang dinyatakan dalam mm. Data hujan harian diambil dari tiga stasiun hujan yang berlokasi di sekitas wilayah penelitian, yaitu:

$$\overline{R} = \frac{1}{n} (R_1 + R_2 + ... + R_n)$$
 (Saparuddin, 2022) (1)

Dengan \overline{R} = hujan rata-rata dalam mili meter, n = jumlah stasiun penakar hujan, R1, R2....R3 = tinggi hujan pada masing-masing stasiun penakar hujan.

Untuk tahun 2013:

$$\overline{R} = \frac{1}{3}(131 + 91 + 102) = 108 \text{ mm}$$

Dari data curah hujan harian pada Tabel 1 dihitung nilai curah hujan rerata untuk tahuntahun berikutnya seperti pada Tabel 2.

No	Tahun	Jombang	PG Jombang Baru	Kedung	Curah Hujan Rerata (mm)
1	2013	131	91	102	108
2	2014	98	99	141	113
3	2015	90	92	93	92
4	2016	142	84	60	95
5	2017	98	92	145	112
6	2018	105	98	145	116
7	2019	97	97	52	82
8	2020	128	98	105	110
9	2021	92	95	85	91
10	2022	225	120	80	142

Tabel 2. Perhitungan Curah Hujan Rerata Daerah

Perhitungan Curah Hujan Rencana dan Hujan Rancangan Dengan Periode Ulang

Curah hujan rancangan dihitung dengan menggunakan metode Log Pearson Tipe III berdasarkan curah hujan rerata daerah pada Tabel 2. Metode ini dapat dipakai untuk semua sebaran data tanpa harus memenuhi syarat koefisien kemencengan (skewness) dan koefisien kepuncakan (kurtosis). Metode frekuensi ini juga benyak digunakan dalam analisis hidrologi, terutama dalam analisis data debit banjir maksimum dan debit banjir minimum. Prosedur metode Log Pearson Tipe III sebagai berikut:

- Mengubah data hujan sebanyak n buah menjadi log R
- Menghitung rata-rata: log R
- Menghitung harga standar deviasi
- Menghitung koefisien kepencengan (Cs)
- Menghitung nilai ekstrem $\log R = \overline{\log R} + K \cdot S_d$
- Mencari antilog dari log R untuk mendapatkan hujan rancangan yang dikehendaki.

No.	Ri	P	Log Ri	(Log Ri-Log Rr)	(Log Ri-Log Rr) ²	(Log Ri-Log Rr) ³
1	82	9,0909	1,914	-0,1066	0,0114	-0,0012
2	91	18,1818	1,957	-0,0630	0,0040	-0,0002
3	92	27,2727	1,962	-0,0582	0,0034	-0,0002
4	95	36,3636	1,979	-0,0412	0,0017	-0,0001

Tabel 3. Perhitungan Curah Hujan Rerata Daerah

108	45,4545	2,033	0,0130	0,0002	0,0000
110	54,5455	2,043	0,0223	0,0005	0,0000
112	63,6364	2,048	0,0275	0,0008	0,0000
113	72,7273	2,052	0,0314	0,0010	0,0000
116	81,8182	2,064	0,0440	0,0019	0,0001
142	90,9091	2,151	0,1308	0,0171	0,0022
Jun	ılah	20,204		0,042	0,001
Log l	R _{rerata}	2,020			
Sta. Deviasi (Sd)		0,068			
Cs		0,289			
	110 112 113 116 142 Jun Log I Sta. Dev	110 54,5455 112 63,6364 113 72,7273 116 81,8182 142 90,9091 Jumlah Log R _{rerata} Sta. Deviasi (Sd)	110 54,5455 2,043 112 63,6364 2,048 113 72,7273 2,052 116 81,8182 2,064 142 90,9091 2,151 Jumlah 20,204 Log R _{rerata} 2,020 Sta. Deviasi (Sd) 0,068	110 54,5455 2,043 0,0223 112 63,6364 2,048 0,0275 113 72,7273 2,052 0,0314 116 81,8182 2,064 0,0440 142 90,9091 2,151 0,1308 Jumlah 20,204 Log R _{rerata} 2,020 Sta. Deviasi (Sd) 0,068	110 54,5455 2,043 0,0223 0,0005 112 63,6364 2,048 0,0275 0,0008 113 72,7273 2,052 0,0314 0,0010 116 81,8182 2,064 0,0440 0,0019 142 90,9091 2,151 0,1308 0,0171 Jumlah 20,204 0,042 Log R _{rerata} 2,020 Sta. Deviasi (Sd) 0,068

Tabel 4. Perhitungan Curah Hujan Rancangan dengan Periode Ulang T

Tr (tahun)	Log D (Log D)	Sd	Cs	K (Tabel)	Curah Hujan Rancangan		
11 (talluli)	$Log R_{rerata}(Log R_r)$		CS	K (Tabel)	Log	mn	
1	2,020	0,0682	0,2893	-2,141	1,874	74,877	
2	2,020	0,0682	0,2893	-1,592	1,912	81,620	
5	2,020	0,0682	0,2893	-1,284	1,933	85,678	
10	2,020	0,0682	0,2893	-0,871	1,961	91,412	
25	2,020	0,0682	0,2893	-0,043	2,017	104,106	
50	2,020	0,0682	0,2893	0,848	2,078	119,752	

Tabel 4 adalah hasil perhitungan curah hujan rancangan berdasarkan nilai Log R_{rerata}, Sd, dan Cs pada Tabel 3.

Perhitungan Intensitas Hujan

Perhitungan intensitas hujan menggunakan persamaan dari Mononobe dengan durasi hujan dominan selama 3 jam. Curah hujan sehari untuk kala ulang 10 tahun adalah 91,412 mm.

$$I = \frac{R_{24}}{24} \left(\frac{24}{t}\right)^{2/3}$$
 (Erna, Muliddin, & Harimudin, 2021) (2)

dengan I = intensitas curah hujan pada durasi t untuk kala ulang T tahun dalam mm/jam sebesar 91,412 (Tabel 4), R₂₄ = curah hujan harian maksimum dengan kala ulang T tahun dalam mm, t = durasi curah hujan, dalam jam.

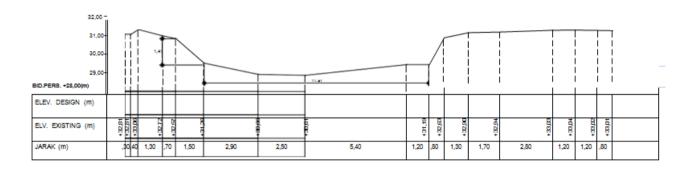
$$I = \frac{91,412}{24} \left(\frac{24}{3}\right)^{2/3} = 15,235 \text{ mm/jam}$$

Perhitungan Debit Rencana

Debit rencana dihitung menggunakan Metode Rasional dengan koefisien limpasan untuk sawah waktu diairi adalah 0,7. Luas daerah aliran adalah 27,16 km².

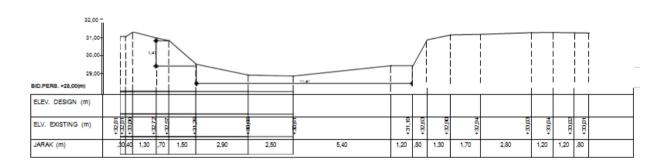
$$Q_{+}=0.278.C.I.A$$
 (Siswanto, Riman, & Halim, 2022) (3)

dengan Qt = debit rencana untuk kala ulang 10 tahun dalam m^3/dt , C = koefisien limpasan, I = intensitas hujan untuk kala ulang 10 tahun, A = luas daerah aliran.


$$Q_t = 0.278 \cdot 0.7 \cdot 15,235 \cdot 27,16 = 80,524 \text{ m}^3/\text{dt}$$

Perhitungan Kapasitas Eksisting Saluran Pembuang Beweh

Untuk mengetahui kapasitas eksisting Saluran Pembuang Beweh dilakukan langkah-langkah sebagai berikut:


- a. Mengukur cross section saluran dengan membagi panjang saluran menjadi 21 STA dengan jarak masing-masing STA adalah 50 meter;
- b. Menggambar hasil pengukuran cross section;
- c. Menghitung luas penampang;
- d. Mengukur kecepatan aliran;
- e. Menghitung debit eksisting.

Gambar 2 dan Gambar 3 adalah contoh hasil dari perhitungan kapasitas eksisting saluran pembuang Beweh.

Gambar 3. Contoh hasil penggambaran dari pengkuran cross section STA 2

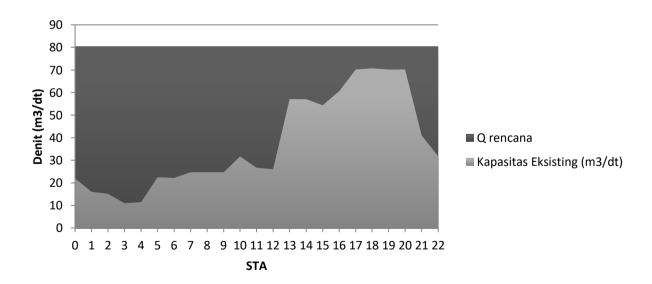
(Sumber: Hasil pengukuran)

Gambar 4. Contoh hasil penggambaran dari pengukuran cross section STA 22

(Sumber: Hasil pengukuran)

Tabel 5. Perhitungan Kapasitas Eksisting Saluran Pembuang Beweh

STA	V	A	Q	CT A	V	A	Q
SIA	m/dt	(m^2)	m³/dt	STA	m/dt	(m^2)	m³/dt
0	1,7	12,95	22,02	12	1,7	15,29	25,99
1	1,7	9,47	16,10	13	1,7	33,60	57,12
2	1,7	8,91	15,15	14	1,7	33,60	57,12
3	1,7	6,45	10,97	15	1,7	32,00	54,40
4	1,7	6,73	11,44	16	1,7	35,66	60,62
5	1.7	13.24	22.51	17	1.7	41.32	70.24

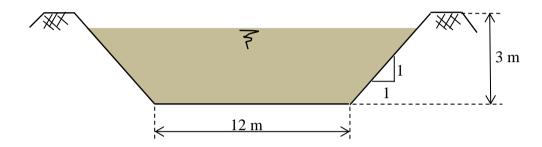

6	1,7	13,09	22,25	18	1,7	41,62	70,75
7	1,7	14,55	24,74	19	1,7	41,32	70,24
8	1,7	14,56	24,75	20	1,7	41,32	70,24
9	1,7	14,56	24,75	21	1,7	24,12	41,00
10	1,7	18,65	31,71	22	1,7	18,72	31,82
11	1,7	15,68	26,66				

PEMBAHASAN

Hasil perhitungan debit rencana dihitung menggunakan Metode Rasional diperoleh sebesar 80,524 m³/dt. Dengan membandingkan debit rencana dan hasil perhitungan kapasitas eksisting saluran pada Tabel 5, dihitung debit luapan Saluran Pembuang Beweh sebagaimana tabel 6 berikut:

STA	Q _{eksisting} (m ³ /dt)	Q _{meluap} (m³/dt)	STA	Q _{eksisting} (m ³ /dt)	Q _{meluap} (m³/dt)
0	22,02	58,50	12	25,99	54,53
1	16,10	64,42	13	57,12	23,40
2	15,15	65,37	14	57,12	23,40
3	10,97	69,55	15	54,40	26,12
4	11,44	69,08	16	60,62	19,90
5	22,51	58,01	17	70,24	10,28
6	22,25	58,27	18	70,75	9,77
7	24,74	55,78	19	70,24	10,28
8	24,75	55,77	20	70,24	10,28
9	24,75	55,77	21	41,00	39,52
10	31,71	48,81	22	31,82	48,70
11	26,66	53,86			

Tabel 6. Perhitungan Debit Luapan Saluran Pembuang Beweh

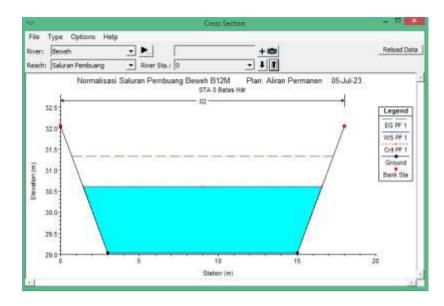

Gambar 5. Grafik Hubungan Debit Rencana Dengan Kapasistas Eksisting Saluran

Dari perhitungan check debit pada Tabel 6 dan Gambar 5 diperoleh variasi besaran debit eksiting di sepanjang saluran pembuang Beweh antara 10,97 m3/dt (minimum) dan 70,75

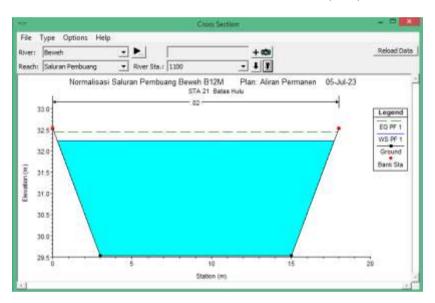
m3/dt (maksimum). Dengan membandingkan besaran debit eksisting dan debit rencana sebesar 80,524 m3/dt, maka terjadi luapan pada semua stasiun. Debit luapan yang terjadi seperti ditunjukkan pada Tabel 6. Dengan demikian diperlukan perencanaan ulang dimensi Saluran Pembuang Beweh sebagai dasar untuk melakukan normalisasi.

Perhitungan Rencana Dimensi Saluran

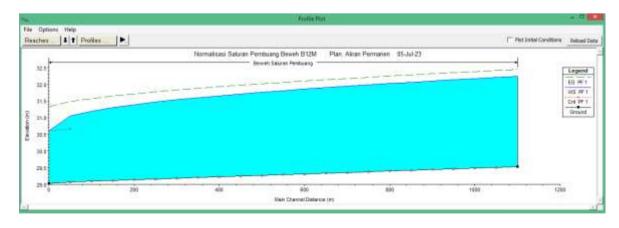
Perhitungan rencana dimensi saluran pembuang Beweh didasarkan pada hasil perhitungan Debit Rencana (Or) sebesar 80,524 m³/dt. Penampang saluran direncanakan berbentuk trapesium dengan kemiringan talud 1:1. Dimensi saluran direncanakan seperti gambar 5.


Gambar 5. Dimensi Saluran Rencana

I D (A)		(le terre by)
Luas Penampang (A)	=	(b+m.h)h
		$(12 + 1.3).3 = 45 \text{ m}^2$
Keliling Basah (P)	=	$b+2.h\sqrt{1+m^2}$
		$12 + 2.3\sqrt{1 + 1^2} = 20,485 \text{ m}$
Jari-jari Hidrolis (R)	=	A/P = 45/20,485 = 2,197 m
Kemiringan (So)	=	Elevasi di hulu — elevasi di hilir/Panjang saluran
		29,530 - 29,022/1100 = 0,00046
Kecepatan Aliran (V)	=	$\frac{1}{n} \cdot R^{2/3} \cdot S^{1/2}$
	=	$\frac{1}{0,02}$. 2,197 $^{2/3}$. 0,00046 $^{1/2}$
	=	1,81 m/dt
Debit Saluran (Q)	=	A.V = 45.1,81
	=	$81,708 \text{ m}^3/\text{dt}$


Hasil perhitungan untuk rencana saluran pembuang menghasilkan debit = 81,708 m³/dt lebih besar dari debit rencana (Qr) = 80,524 m³/dt sehingga dimensi saluran rencana bisa dipergunakan.

Analisa Kapasitas Penampang Menggukana HEC-RAS


Hasil simulasi kapasitas penampang saluran rencana menggunakan program HEC-RAS kami presentasikan sebagai berikut:

Gambar 6. Simulasi Cross Section STA.0 (hulu)

Gambar 7. Simulasi cross section STA.1100 (hilir)

Gambar 8. Simulasi Profil Muka Air Sepanjang Saluran

Dari Output Program HEC-RAS kondisi saluran pembuang rencana dengan debit kala ulang 10 tahun mampu menampung debit yang ada.

KESIMPULAN

Dari pembahasan terhadap hasil analisa terhadap data hujan selama 10 tahun dan kapasitas eksisting saluran pembuang Beweh dapat disimpulkan sebagai berikut:

- 1. Intensitas hujan (I) di wilayah saluran pembuang Beweh sebesar 15,235 mm/jam dan debit rencana 80.524 m³/dt.
- 2. Kapasitas eksisting di sepanjang saluran pembuang Beweh bervariasi antara 10,97 m3/dt (minimum) dan 70,75 m3/dt (maksimum), maka tidak mampu menampung debit yang direncanakan dan perlu dilakukan desain ulang (normalisasi).
- 3. Untuk penanggulangan banjir, maka direncanakan penampang trapesium saluran pembuang Beweh sebagai berikut: B = 12 m; H = 3 m; m = 1; $Q = 81,708 \text{ m}^3/\text{dt}$.

Hasil analisis menggunakan program HEC-RAS, saluran pembuang rencana dengan debit kala ulang 10 tahun mampu menampung debit yang ada.

DAFTAR PUSTAKA

- Abdussamad, Z. (2021). Metode Penelitian Kualitatif. Makassar: CV. syakir Media Press.
- Anam, S., Dermawan, V., & Sisingih, D. (2016). Evaluasi Fungsi Bangunan Pengendali Banjir Sungai Barabai Kabupaten Hulu Sungai Tengah Provinsi Kalimantan Selatan. Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 6(2), Pp. 271 -286.
- Anggraheni, E., Sutjiningsih, D., Heri Mulyono, B., Agustiningrum, I., Muhamad Yahya, D., Besar Wilayah Sungai Ciliwung Cisadane, B., ... Cabang Jakarta, H. (2022). Pengaruh Sebaran Spasial Hujan terhadap Pemilihan Metode Hujan Wilayah Berbasis Analisis Geospasial. Jurnal Teknik Sumber Daya Air, 2022(2), 81–92. https://doi.org/10.56860/JTSDA.V2I2.41
- BMKG. (n.d.). Lokasi Penakar Hujan Manual Observasi di Jawa Timur. Retrieved from https://staklim-jatim.bmkg.go.id/index.php/profil/sitemap/82-peralatan-observasiklimatologi/55555575-lokasi-penakar-hujan-manual-ombrometer-di-jawa-timur
- Erna, E., Muliddin, M., & Harimudin, J. (2021). Analisis Pola dan Intensitas Curah Hujan Berdasarkan Data TRMM di Sulawesi Tenggara. JAGAT (Jurnal Geografi Aplikasi Dan Teknologi), 5(2), 105. https://doi.org/10.33772/jagat.v5i2.21465
- Kasim, T. W. (2020). Optimalisasi Saluran Pembuang To' Pongo Desa To' Pongo Kecamatan Lamasi. RADIAL: Jurnal Peradaban Sains, Rekayasa Dan Teknologi, 7(2). https://doi.org/10.37971/radial.v7i2.192
- Muqaddas, Z., Kusuma, Z., Asmaranto, R., & Yanuwiadi, B. (2021). Pengendalian Banjir dengan Konsep Model Desa Spons Berbasis Ecodrains (studi kasus: DAS Kamoning Kabupaten Sampang, Madura). Jurnal Teknik Pengairan, 12(1), 38–48. https://doi.org/10.21776/ub.pengairan.2021.012.01.04
- Paresa, J., Pamuttu, D. L., & Kartini, N. (2021). Evaluasi Sistem Perlintasan Jaringan

- Drainase Dengan Metode Log Pearson Tipe III. *Musamus Journal of Civil Engineering*, *3*(02), 41–48. https://doi.org/10.35724/MJCE.V3I02.3520
- Parulian, R., Bisri, M., & Solichin, M. (2016). Analisis Profil Muka Air Dan Luasan Genangan Di Lahan Akibat Variasi Posisi Sudetan Sungai Ciliwung. *Urnal Teknik Pengairan: Journal of Water Resources Engineering*, 6(2), Pp. 251 262.
- Priyanka Prajna Paramitha, Rudy P. Tambunan, & Tito Latif Indra. (2020). Kajian Pengurangan Risiko Bencana Banjir di DAS Ciliwung. *IJEEM Indonesian Journal of Environmental Education and Management*, 5(2). https://doi.org/10.21009/ijeem.052.01
- Saparuddin, S. (2022). Analisis Tinggi Air Banjir Pada Sungai Sombe Berdasarkan Debit Banjir Metode Rasional. *Jurnal Sains Dan Teknologi Tadulako*, 8(2), 79–92. https://doi.org/10.22487/JSTT.V8I2.405
- Sari, A. K. (2018). Analisis Debit Banjir Sungai Melupo Dengan Metode Hss GAMA 1. *PENA TEKNIK: Jurnal Ilmiah Ilmu-Ilmu Teknik*, *3*(2). https://doi.org/10.51557/pt_jiit.v3i2.175
- Siswanto, A., Riman, & Halim, A. (2022). Kajian Evaluasi Kapasitas Tampung Saluran Terhadap Debit Banjir Rancangan Pada Perencanaan Sistem Jaringan Drainase Kota Kandangan. *BOUWPLANK Jurnal Ilmiah Teknik Sipil Dan Lingkungan*, *1*(1), 15–26. https://doi.org/10.31328/bouwplank.v1i1.223
- Soewandita, H. (2019). ANALISIS BENCANA KEKERINGAN DI WILAYAH KABUPATEN SERANG. *Jurnal Sains Dan Teknologi Mitigasi Bencana*, *13*(1), 34. https://doi.org/10.29122/jstmb.v13i1.3037
- Sulaiman, M. E., Setiawan, H., Jalil, M., Purwadi, F., S, C. A., Brata, A. W., & Jufda, A. S. (2020). Analisis Penyebab Banjir di Kota Samarinda. *Jurnal Geografi Gea*, 20(1), 39–43. https://doi.org/10.17509/gea.v20i1.22021
- Sundoro, G. H., Bisri, M., & Sisinggih, D. (2017). Kajian Peningkatan Kapasitas Inlet Kanal Banjir Pelangwot Sedayulawas Di Kabupaten Lamongan. *Jurnal Teknik Pengairan: Journal of Water Resources Engineering*, 8(2), Pp.169–180.
- Tendean, F., Suhardjono, S., & Yuliani, E. (2016). Kajian Penanganan Banjir Sungai Anafre Di Kota Jayapura. *Jurnal Teknik Pengairan: Journal of Water Resources Engineering*, 6(2), Pp. 175 185.